Biclosed Relations with respect to Torsion Theories

Rogelio Fernández-Alonso

Universidad Autónoma Metropolitana - Iztapalapa México

Non Commutative Rings and Their Applications, IV

Lens, France June 2015

Starting point

- Starting point
- Biclosed relations wrt torsion theories

- Starting point
- Biclosed relations wrt torsion theories
- Hom-type bifunctors

- Starting point
- Biclosed relations wrt torsion theories
- 3 Hom-type bifunctors
- Biclosed relations induced by bifunctors

- Starting point
- Biclosed relations wrt torsion theories
- 3 Hom-type bifunctors
- Biclosed relations induced by bifunctors
- 5 Semisimple Artinian rings

torsion theories

Definition [Dickson, 1966]

A torsion theory is a pair of classes (\mathbb{T}, \mathbb{F}) in R-Mod such that:

- $\bullet \ \mathbb{T} \cap \mathbb{F} = \{0\}.$
- \mathbb{T} is closed under epimorphisms, \mathbb{F} is closed under monomorphisms.
- For each $M \in R$ -Mod there exist $T \in \mathbb{T}$, $F \in \mathbb{F}$, and an exact sequence:

$$0 \rightarrow T \rightarrow M \rightarrow F \rightarrow 0$$

torsion theories

Characterization [Dickson, 1966]

A pair of classes (\mathbb{T},\mathbb{F}) in R-Mod is a torsion theory if, and only if:

- $\mathbb{T} = I(\mathbb{F}) := \{M \mid \forall N \in \mathbb{F}, Hom_R(M, N) = 0\}$
- $\mathbb{F} = r(\mathbb{T}) := \{ N \mid \forall M \in \mathbb{T}, Hom_B(M, N) = 0 \}$

torsion theories

Characterization [Dickson, 1966]

A pair of classes (\mathbb{T},\mathbb{F}) in R-Mod is a torsion theory if, and only if:

- $\mathbb{T} = I(\mathbb{F}) := \{M \mid \forall N \in \mathbb{F}, Hom_R(M, N) = 0\}$
- $\mathbb{F} = r(\mathbb{T}) := \{ N \mid \forall M \in \mathbb{T}, Hom_R(M, N) = 0 \}$

Notice that $\langle r, I \rangle : \wp(R\text{-Mod}) \to \wp(R\text{-Mod})$ is an antitone Galois connection, i.e.:

- r, l are order-reversing.
- $I \circ r, r \circ I$ are inflationary.

Proposition

Proposition

There is a one-to-one correspondence between relations $S \subseteq A \times B$ and Galois connections $\langle f, g \rangle : \wp(A) \to \wp(B)$:

• Given $S \subseteq A \times B$:

Proposition

- Given $S \subseteq A \times B$:
 - $f_{\mathcal{S}}(U) := \bigcap_{a \in U} a\mathcal{S}$, where $a\mathcal{S} := \{b \in B \mid (a, b) \in \mathcal{S}\}$.
 - $f^{\mathcal{S}}(V) := \bigcap_{b \in V} \mathcal{S}b$, where $\mathcal{S}b := \{a \in A \mid (a,b) \in \mathcal{S}\}.$

Proposition

- Given $S \subseteq A \times B$:
 - $f_{\mathcal{S}}(U) := \bigcap_{a \in U} a\mathcal{S}$, where $a\mathcal{S} := \{b \in B \mid (a, b) \in \mathcal{S}\}$.
 - $f^{\mathcal{S}}(V) := \bigcap_{b \in V} \mathcal{S}b$, where $\mathcal{S}b := \{a \in A \mid (a,b) \in \mathcal{S}\}.$
- Given $\langle f, g \rangle : \wp(A) \rightarrow \wp(B)$:

Proposition

- Given $S \subseteq A \times B$:
 - $f_{\mathcal{S}}(U) := \bigcap_{a \in U} a\mathcal{S}$, where $a\mathcal{S} := \{b \in B \mid (a, b) \in \mathcal{S}\}$.
 - $f^{\mathcal{S}}(V) := \bigcap_{b \in V} \mathcal{S}b$, where $\mathcal{S}b := \{a \in A \mid (a,b) \in \mathcal{S}\}.$
- Given $\langle f, g \rangle : \wp(A) \rightarrow \wp(B)$:

$$S_{(f,g)} := \{(a,b) \in A \times B \mid b \in f(\{a\})\}\$$

= $\{(a,b) \in A \times B \mid a \in g(\{b\})\}.$

Definition

Given a set A, a Moore family is a family Φ of subsets of A which satisfy $\cap \Phi' \in \Phi$ for every $\Phi' \subseteq \Phi$.

Definition

Given a set A, a Moore family is a family Φ of subsets of A which satisfy $\cap \Phi' \in \Phi$ for every $\Phi' \subseteq \Phi$.

Definition [Domenach, Leclerc, 2000]

Given Moore families $\Phi \subseteq \wp(A)$ and $\Phi' \subseteq \wp(B)$, a relation $\mathcal{R} \subseteq A \times B$ is called biclosed wrt (Φ, Φ') if:

- $\forall a \in A, aR \in \Phi'$
- $\forall b \in B, \mathcal{R}b \in \Phi$

some Moore situations

some Moore situations

• $\Phi = cls(\varphi), \Phi' = cls(\varphi')$, are Moore families, where φ, φ' are any closure operators on $\wp(A), \wp(B)$, respectively.

some Moore situations

- $\Phi = cls(\varphi), \Phi' = cls(\varphi')$, are Moore families, where φ, φ' are any closure operators on $\wp(A), \wp(B)$, respectively.
- $\varphi = g \circ f, \varphi' = f \circ g$ are closure operators, where $\langle f, g \rangle : \wp(A) \to \wp(B)$ is any Galois connection. In this case $\Phi = Im(g)$ and $\Phi' = Im(f)$.

some Moore situations

some Moore situations

• In case that $\langle f, g \rangle : \wp(A) \to \wp(B)$ is the Galois connection induced by any relation $S \subseteq A \times B$:

some Moore situations

- In case that $\langle f, g \rangle : \wp(A) \to \wp(B)$ is the Galois connection induced by any relation $S \subseteq A \times B$:

 - $\Phi = \{\bigcap_{b \in V} Sb \mid V \subseteq B\}$ $\Phi' = \{\bigcap_{a \in U} aS \mid U \subseteq A\}$

some Moore situations

• In case that $\langle f, g \rangle : \wp(A) \to \wp(B)$ is the Galois connection induced by any relation $S \subseteq A \times B$:

•
$$\Phi = \{\bigcap_{b \in V} Sb \mid V \subseteq B\}$$

• $\Phi' = \{\bigcap_{a \in U} aS \mid U \subseteq A\}$

• In case that $\langle r, I \rangle : \wp(R\text{-Mod}) \to \wp(R\text{-Mod})$ is the Galois connection induced by the relation $\mathcal{H} = \{(M, N) \mid Hom_R(M, N) = 0\}$:

some Moore situations

- In case that $\langle f, g \rangle : \wp(A) \to \wp(B)$ is the Galois connection induced by any relation $S \subseteq A \times B$:
 - $\Phi = \{ \bigcap_{b \in V} \mathcal{S}b \mid V \subseteq B \}$
 - $\bullet \ \Phi' = \{ \bigcap_{a \in U} aS \mid U \subseteq A \}$
- In case that $\langle r, I \rangle$: $\wp(R\text{-Mod}) \rightarrow \wp(R\text{-Mod})$ is the Galois connection induced by the relation $\mathcal{H} = \{(M, N) \mid Hom_B(M, N) = 0\}$:
 - $\Phi = \{ \mathbb{T} | \mathbb{T} \text{ is a torsion class} \}$
 - $\Phi' = \{ \mathbb{F} | \mathbb{F} \text{ is a torsion-free class} \}$

Characterization

A relation \mathcal{R} on R-Mod is biclosed wrt \mathcal{H} if, and only if:

Characterization

A relation \mathcal{R} on R-Mod is biclosed wrt \mathcal{H} if, and only if:

• $\forall M \in R$ -Mod, MR is a torsion-free class.

Characterization

A relation \mathcal{R} on R-Mod is biclosed wrt \mathcal{H} if, and only if:

- $\forall M \in R\text{-Mod}, M\mathcal{R}$ is a torsion-free class.
- $\forall N \in R\text{-Mod}, \mathcal{R}N$ is a torsion class.

Characterization

A relation \mathcal{R} on R-Mod is biclosed wrt \mathcal{H} if, and only if:

- $\forall M \in R\text{-Mod}, M\mathcal{R}$ is a torsion-free class.
- $\forall N \in R\text{-Mod}, \mathcal{R}N$ is a torsion class.

Characterization

A relation \mathcal{R} on R-Mod is biclosed wrt \mathcal{H} if, and only if:

- $\forall M \in R\text{-Mod}, M\mathcal{R}$ is a torsion-free class.
- $\forall N \in R$ -Mod, $\Re N$ is a torsion class.

 $[\mathcal{H}]_{\prec}$ denotes the class of all biclosed relations wrt \mathcal{H} .

Characterization

A relation \mathcal{R} on R-Mod is biclosed wrt \mathcal{H} if, and only if:

- $\forall M \in R$ -Mod, MR is a torsion-free class.
- $\forall N \in R$ -Mod, $\Re N$ is a torsion class.

 $[\mathcal{H}]_{\leq}$ denotes the class of all biclosed relations wrt \mathcal{H} .

A biclosed relation \mathcal{R} defines \mathcal{R} -torsion pairs (\mathbb{T}, \mathbb{F}) such that:

Characterization

A relation \mathcal{R} on R-Mod is biclosed wrt \mathcal{H} if, and only if:

- $\forall M \in R$ -Mod, MR is a torsion-free class.
- $\forall N \in R$ -Mod, $\Re N$ is a torsion class.

 $[\mathcal{H}]_{\leq}$ denotes the class of all biclosed relations wrt \mathcal{H} .

A biclosed relation \mathcal{R} defines \mathcal{R} -torsion pairs (\mathbb{T}, \mathbb{F}) such that:

•
$$\mathbb{T} = f^{\mathcal{R}}(\mathbb{F}) := \{ M \mid \forall N \in \mathbb{F}, (M, N) \in \mathcal{R} \}$$

Characterization

A relation \mathcal{R} on R-Mod is biclosed wrt \mathcal{H} if, and only if:

- $\forall M \in R$ -Mod, MR is a torsion-free class.
- $\forall N \in R$ -Mod, RN is a torsion class.

 $[\mathcal{H}]_{\leq}$ denotes the class of all biclosed relations wrt \mathcal{H} .

A biclosed relation \mathcal{R} defines \mathcal{R} -torsion pairs (\mathbb{T}, \mathbb{F}) such that:

- $\mathbb{T} = f^{\mathcal{R}}(\mathbb{F}) := \{ M \mid \forall N \in \mathbb{F}, (M, N) \in \mathcal{R} \}$
- $\mathbb{F} = f_{\mathcal{R}}(\mathbb{T}) := \{ N \mid \forall M \in \mathbb{T}, (M, N) \in \mathcal{R} \}$

Definitions

A preradical is an assignment $\sigma : R\text{-Mod} \to R\text{-Mod}$ such that:

Definitions

A preradical is an assignment $\sigma : R\text{-Mod} \to R\text{-Mod}$ such that:

• For each $M \in R$ -Mod, $\sigma(M) \leq M$

Definitions

A preradical is an assignment $\sigma : R\text{-Mod} \to R\text{-Mod}$ such that:

- For each $M \in R$ -Mod, $\sigma(M) \leq M$
- For each $f: M \to N$, $f(\sigma(M)) \le \sigma(N)$

Definitions

A preradical is an assignment $\sigma : R\text{-Mod} \to R\text{-Mod}$ such that:

- For each $M \in R$ -Mod, $\sigma(M) \leq M$
- For each $f: M \to N$, $f(\sigma(M)) \le \sigma(N)$

preradicals

Definitions

A preradical is an assignment $\sigma : R\text{-Mod} \rightarrow R\text{-Mod}$ such that:

- For each $M \in R$ -Mod, $\sigma(M) \leq M$
- For each $f: M \to N$, $f(\sigma(M)) \le \sigma(N)$

R-pr denotes the class of all preradicals. It is a (big) complete lattice, where:

preradicals

Definitions

A preradical is an assignment $\sigma : R\text{-Mod} \to R\text{-Mod}$ such that:

- For each $M \in R$ -Mod, $\sigma(M) \leq M$
- For each $f: M \to N$, $f(\sigma(M)) \le \sigma(N)$

R-pr denotes the class of all preradicals. It is a (big) complete lattice, where:

• meet:
$$\left(\bigwedge_{i\in\mathcal{C}}\sigma_i\right)(M)=\bigcap_{i\in\mathcal{C}}\sigma_i(M)$$

preradicals

Definitions

A preradical is an assignment $\sigma : R\text{-Mod} \to R\text{-Mod}$ such that:

- For each $M \in R$ -Mod, $\sigma(M) \leq M$
- For each $f: M \to N$, $f(\sigma(M)) \le \sigma(N)$

R-pr denotes the class of all preradicals. It is a (big) complete lattice, where:

• meet:
$$\left(\bigwedge_{i\in\mathcal{C}}\sigma_i\right)(M)=\bigcap_{i\in\mathcal{C}}\sigma_i(M)$$

• join:
$$\left(\bigvee_{i\in\mathcal{C}}\sigma_i\right)(M)=\sum_{i\in\mathcal{C}}\sigma_i(M)$$

Definitions Given preradicals σ and τ :

Definitions

Given preradicals σ and τ :

• product: $(\sigma \cdot \tau)(M) := \sigma(\tau(M))$

Definitions

Given preradicals σ and τ :

- product: $(\sigma \cdot \tau)(M) := \sigma(\tau(M))$
- coproduct: $(\sigma : \tau)(M)/\sigma(M) := \tau(M/\sigma(M))$

Definitions

Given preradicals σ and τ :

- product: $(\sigma \cdot \tau)(M) := \sigma(\tau(M))$
- coproduct: $(\sigma : \tau)(M)/\sigma(M) := \tau(M/\sigma(M))$

Definitions

Given preradicals σ and τ :

- product: $(\sigma \cdot \tau)(M) := \sigma(\tau(M))$
- coproduct: $(\sigma : \tau)(M)/\sigma(M) := \tau(M/\sigma(M))$

A preradical σ is called:

Definitions

Given preradicals σ and τ :

- product: $(\sigma \cdot \tau)(M) := \sigma(\tau(M))$
- coproduct: $(\sigma : \tau)(M)/\sigma(M) := \tau(M/\sigma(M))$

A preradical σ is called:

• idempotent, if $\sigma \cdot \sigma = \sigma$

Definitions

Given preradicals σ and τ :

- product: $(\sigma \cdot \tau)(M) := \sigma(\tau(M))$
- coproduct: $(\sigma : \tau)(M)/\sigma(M) := \tau(M/\sigma(M))$

A preradical σ is called:

- idempotent, if $\sigma \cdot \sigma = \sigma$
- radical, if $\sigma : \sigma = \sigma$

Definitions

Given preradicals σ and τ :

- product: $(\sigma \cdot \tau)(M) := \sigma(\tau(M))$
- coproduct: $(\sigma : \tau)(M)/\sigma(M) := \tau(M/\sigma(M))$

A preradical σ is called:

- idempotent, if $\sigma \cdot \sigma = \sigma$
- radical, if $\sigma : \sigma = \sigma$

Definitions

Given preradicals σ and τ :

- product: $(\sigma \cdot \tau)(M) := \sigma(\tau(M))$
- coproduct: $(\sigma : \tau)(M)/\sigma(M) := \tau(M/\sigma(M))$

A preradical σ is called:

- idempotent, if $\sigma \cdot \sigma = \sigma$
- radical, if $\sigma : \sigma = \sigma$

R-radid denotes the class of all idempotent radicals.

Definition

If R is a biclosed relation wrt H then:

Definition

If \mathcal{R} is a biclosed relation wrt \mathcal{H} then:

• $\langle \lambda_{\mathcal{R}}, \mu_{\mathcal{R}} \rangle$ is an isotone Galois connection on *R*-radid:

Definition

If \mathcal{R} is a biclosed relation wrt \mathcal{H} then:

• $\langle \lambda_{\mathcal{R}}, \mu_{\mathcal{R}} \rangle$ is an isotone Galois connection on *R*-radid:

Definition

If \mathcal{R} is a biclosed relation wrt \mathcal{H} then:

• $\langle \lambda_R, \mu_R \rangle$ is an isotone Galois connection on *R*-radid:

$$\begin{split} \lambda_{\mathcal{R}}(\sigma) &:= \mathsf{Rej}_{\ f_{\mathcal{R}}(\mathbb{T}_{\sigma})} = \bigwedge_{N \in f_{\mathcal{R}}(\mathbb{T}_{\sigma})} \omega_0^N \\ \mu_{\mathcal{R}}(\tau) &:= \mathsf{Tr}_{\ f^{\mathcal{R}}(\mathbb{F}_{\tau})} \end{aligned} = \bigvee_{\substack{M \in f^{\mathcal{R}}(\mathbb{F}_{\tau})}} \alpha_M^M \end{split}$$

• It induces an isomorphism between the intervals:

Definition

If \mathcal{R} is a biclosed relation wrt \mathcal{H} then:

• $\langle \lambda_R, \mu_R \rangle$ is an isotone Galois connection on *R*-radid:

$$\begin{split} \lambda_{\mathcal{R}}(\sigma) &:= \mathsf{Rej}_{\ f_{\mathcal{R}}(\mathbb{T}_{\sigma})} = \bigwedge_{N \in f_{\mathcal{R}}(\mathbb{T}_{\sigma})} \omega_0^N \\ \mu_{\mathcal{R}}(\tau) &:= \mathsf{Tr}_{\ f^{\mathcal{R}}(\mathbb{F}_{\tau})} \end{aligned} = \bigvee_{\substack{M \in f^{\mathcal{R}}(\mathbb{F}_{\tau})}} \alpha_M^M \end{split}$$

• It induces an isomorphism between the intervals:

Definition

If \mathcal{R} is a biclosed relation wrt \mathcal{H} then:

• $\langle \lambda_R, \mu_R \rangle$ is an isotone Galois connection on *R*-radid:

$$\begin{split} \lambda_{\mathcal{R}}(\sigma) &:= \mathsf{Rej}_{\,f_{\mathcal{R}}(\mathbb{T}_\sigma)} = \bigwedge_{N \in f_{\mathcal{R}}(\mathbb{T}_\sigma)} \omega_0^N \\ \mu_{\mathcal{R}}(\tau) &:= \mathsf{Tr}_{\,f^{\mathcal{R}}(\mathbb{F}_\tau)} &= \bigvee_{M \in f^{\mathcal{R}}(\mathbb{F}_\tau)} \alpha_M^M \end{split}$$

• It induces an isomorphism between the intervals:

$$\begin{aligned} &[[\sigma_{\mathcal{R}},1]] := \{ \sigma \in \textit{R}\text{-radid} \mid \mathbb{T}_{\sigma} \in (\textit{f})_{\mathcal{R}}\text{-}\textit{cls} \}, \\ &[[0,\tau_{\mathcal{R}}]] := \{ \tau \in \textit{R}\text{-radid} \mid \mathbb{F}_{\tau} \in \textit{cls-}(\textit{f})_{\mathcal{R}} \}. \end{aligned}$$

Characterization

Characterization

Let $H:\mathcal{A}\to\mathcal{B}$ be a covariant functor between bicomplete abelian categories.

 H is continuous if, and only if, H is left exact and it preserves products.

Characterization

- H is continuous if, and only if, H is left exact and it preserves products.
- H is cocontinuous if, and only if, H is right exact and it preserves coproducts.

Characterization

Characterization

Let $H':\mathcal{A}\to\mathcal{B}$ be a contravariant functor between bicomplete abelian categories.

 H' is continuous if, and only if, H' is left exact and it takes coproducts to products.

Characterization

- H' is continuous if, and only if, H' is left exact and it takes coproducts to products.
- H' is cocontinuous if, and only if, H' is right exact and it takes products to coproducts.

Definition

Definition

Let $H:\mathcal{A}\to\mathcal{B}$ be a covariant functor between bicomplete abelian categories.

H is called almost continuous if:

Definition

- H is called almost continuous if:
 - H is left exact.

Definition

- H is called almost continuous if:
 - H is left exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} , the induced morphism $\prod H(p_{\alpha}): H(\prod M_{\alpha}) \longrightarrow \prod H(M_{\alpha})$ is a monomorphism.

Definition

- H is called almost continuous if:
 - H is left exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} , the induced morphism $\prod H(p_{\alpha}) : H(\prod M_{\alpha}) \longrightarrow \prod H(M_{\alpha})$ is a monomorphism.
- H is called almost cocontinuous if:

Definition

- H is called almost continuous if:
 - H is left exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} , the induced morphism $\prod H(p_{\alpha}) : H(\prod M_{\alpha}) \longrightarrow \prod H(M_{\alpha})$ is a monomorphism.
- H is called almost cocontinuous if:
 - H is right exact.

Definition

- H is called almost continuous if:
 - H is left exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} , the induced morphism $\prod H(p_{\alpha}) : H(\prod M_{\alpha}) \longrightarrow \prod H(M_{\alpha})$ is a monomorphism.
- H is called almost cocontinuous if:
 - H is right exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} the induced morphism $\bigoplus H(i_{\alpha}) : \bigoplus H(M_{\alpha}) \longrightarrow H(\bigoplus M_{\alpha})$ is an epimorphism.

Definition

Definition

Let $H': \mathcal{A} \to \mathcal{B}$ be a contravariant functor between bicomplete abelian categories.

• H' is called almost continuous if:

Definition

- H' is called almost continuous if:
 - H' is left exact.

Definition

- H' is called almost continuous if:
 - H' is left exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} , the induced morphism $\prod H'(i_{\alpha}): H'(\bigoplus M_{\alpha}) \longrightarrow \prod H'(M_{\alpha})$ is a monomorphism.

Definition

- H' is called almost continuous if:
 - H' is left exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} , the induced morphism $\prod H'(i_{\alpha}): H'(\bigoplus M_{\alpha}) \longrightarrow \prod H'(M_{\alpha})$ is a monomorphism.
- H' is called almost cocontinuous if:

Definition

Let $H': \mathcal{A} \to \mathcal{B}$ be a contravariant functor between bicomplete abelian categories.

- H' is called almost continuous if:
 - H' is left exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} , the induced morphism $\prod H'(i_{\alpha}): H'(\bigoplus M_{\alpha}) \longrightarrow \prod H'(M_{\alpha})$ is a monomorphism.
- H' is called almost cocontinuous if:
 - H' is right exact.

Definition

Let $H': \mathcal{A} \to \mathcal{B}$ be a contravariant functor between bicomplete abelian categories.

- H' is called almost continuous if:
 - H' is left exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} , the induced morphism $\prod H'(i_{\alpha}): H'(\bigoplus M_{\alpha}) \longrightarrow \prod H'(M_{\alpha})$ is a monomorphism.
- H' is called almost cocontinuous if:
 - H' is right exact.
 - For each family $\{M_{\alpha}\}$ of objects in \mathcal{A} the induced morphism $\bigoplus H'(p_{\alpha}): \bigoplus H'(M_{\alpha}) \longrightarrow H'(\prod M_{\alpha})$ is an epimorphism.

examples: continuous and cocontinuous functors

examples: continuous and cocontinuous functors

 Every continuous (cocontinuous) functor is almost continuous (almost cocontinuous).

examples: continuous and cocontinuous functors

- Every continuous (cocontinuous) functor is almost continuous (almost cocontinuous).
- $\operatorname{Hom}_R(M,\underline{\ })$ ($\operatorname{Hom}_R(\underline{\ },M)$) is an almost continuous covariant (contravariant) functor.

examples: continuous and cocontinuous functors

- Every continuous (cocontinuous) functor is almost continuous (almost cocontinuous).
- $\operatorname{Hom}_R(M,\underline{\ })$ ($\operatorname{Hom}_R(\underline{\ },M)$) is an almost continuous covariant (contravariant) functor.
- $M \otimes$ is an almost cocontinuous covariant functor.

examples: the other way round

examples: the other way round

• $M \otimes$ _ is an almost continuous covariant functor if, and only if, M_B is flat and Mittag-Leffler.

examples: the other way round

- M ⊗ _ is an almost continuous covariant functor if, and only if, M_R is flat and Mittag-Leffler.
- Hom_R(M, _) is an almost cocontinuous covariant functor if, and only if, $_RM$ is projective and it has the following property: for any family $\{M_{\alpha}\}_{\alpha\in\Lambda}$ of R-modules, the image of every homomorphism $M\to\bigoplus_{\alpha\in\Lambda}M_{\alpha}$ is contained in $\bigoplus_{\alpha\in\Lambda'}M_{\alpha}$ for some finite subset Λ' of Λ .

examples: preradicals

examples: preradicals

 Every left exact preradical is an almost continuous covariant functor.

examples: preradicals

- Every left exact preradical is an almost continuous covariant functor.
- Every preradical α_I^R , where *I* is an ideal of *R*, is an almost cocontinuous covariant functor.

Definition

A bifunctor $K : \mathcal{A}^{op} \times \mathcal{B} \longrightarrow \mathcal{C}$ is called an AC bifunctor if:

Definition

A bifunctor $K : \mathcal{A}^{op} \times \mathcal{B} \longrightarrow \mathcal{C}$ is called an AC bifunctor if:

• For each object M of A, $K(M, _)$ is an almost continuous covariant functor.

Definition

A bifunctor $K : \mathcal{A}^{op} \times \mathcal{B} \longrightarrow \mathcal{C}$ is called an AC bifunctor if:

- For each object M of A, $K(M, _)$ is an almost continuous covariant functor.
- For each object N of B, K(_, N) is an almost continuous contravariant functor.

Proposition

If $K(\underline{\ },\underline{\ }):\mathcal{A}^{op}\times\mathcal{B}\longrightarrow\mathcal{C}$ is an AC bifunctor, $F:\mathcal{A}'\longrightarrow\mathcal{A}$ is an almost cocontinuous covariant functor and $G:\mathcal{B}'\longrightarrow\mathcal{B}$ is an almost continuous covariant functor then:

Proposition

If $K(_,_): \mathcal{A}^{op} \times \mathcal{B} \longrightarrow \mathcal{C}$ is an AC bifunctor, $F: \mathcal{A}' \longrightarrow \mathcal{A}$ is an almost cocontinuous covariant functor and $G: \mathcal{B}' \longrightarrow \mathcal{B}$ is an almost continuous covariant functor then:

• $K(F(_), _) : (\mathcal{A}')^{op} \times \mathcal{B} \longrightarrow \mathcal{C}$ is an AC bifunctor.

Proposition

If $K(_,_): \mathcal{A}^{op} \times \mathcal{B} \longrightarrow \mathcal{C}$ is an AC bifunctor, $F: \mathcal{A}' \longrightarrow \mathcal{A}$ is an almost cocontinuous covariant functor and $G: \mathcal{B}' \longrightarrow \mathcal{B}$ is an almost continuous covariant functor then:

- $K(F(_),_): (\mathcal{A}')^{op} \times \mathcal{B} \longrightarrow \mathcal{C}$ is an AC bifunctor.
- $K(\underline{\ }, G(\underline{\ })): \mathcal{A}^{op} \times \mathcal{B}' \longrightarrow \mathcal{C}$ is an AC bifunctor.

Theorem

If $K(_,_): (R\operatorname{-Mod})^{op} \times R\operatorname{-Mod} \longrightarrow \mathcal{A}b$ is an AC bifunctor, then $\mathcal{R}_{(K)}:=\{(M,N)\in (R\operatorname{-Mod})^2\mid K(M,N)=0\}$ is biclosed wrt $\mathcal{H}.$

Theorem

If $K(\underline{\ },\underline{\ }):(R\operatorname{\mathsf{-Mod}})^{op}\times R\operatorname{\mathsf{-Mod}}\longrightarrow \mathcal{A}b$ is an AC bifunctor, then $\mathcal{R}_{(K)}:=\{(M,N)\in (R\operatorname{\mathsf{-Mod}})^2\mid K(M,N)=0\}$ is biclosed wrt $\mathcal{H}.$

special cases

 $F: R\text{-Mod} \longrightarrow R\text{-Mod}$ almost cocontinuous covariant,

 $G: R\text{-Mod} \longrightarrow R\text{-Mod}$ almost continuous covariant.

Theorem

If $K(_,_): (R\operatorname{-Mod})^{op} \times R\operatorname{-Mod} \longrightarrow \mathcal{A}b$ is an AC bifunctor, then $\mathcal{R}_{(K)}:=\{(M,N)\in (R\operatorname{-Mod})^2\mid K(M,N)=0\}$ is biclosed wrt $\mathcal{H}.$

special cases

 $F: R\text{-Mod} \longrightarrow R\text{-Mod}$ almost cocontinuous covariant,

 $G: R\text{-Mod} \longrightarrow R\text{-Mod}$ almost continuous covariant.

• $\mathcal{R}^F := \{ (M, N) \in (R\text{-Mod})^2 \mid Hom_R(F(M), N) = 0 \},$

Theorem

If $K(_,_): (R\operatorname{-Mod})^{op} \times R\operatorname{-Mod} \longrightarrow \mathcal{A}b$ is an AC bifunctor, then $\mathcal{R}_{(K)}:=\{(M,N)\in (R\operatorname{-Mod})^2\mid K(M,N)=0\}$ is biclosed wrt $\mathcal{H}.$

special cases

 $F: R\operatorname{\mathsf{-Mod}} \longrightarrow R\operatorname{\mathsf{-Mod}}$ almost cocontinuous covariant,

 $G: R\text{-Mod} \longrightarrow R\text{-Mod}$ almost continuous covariant.

- $\mathcal{R}^F := \{ (M, N) \in (R\text{-Mod})^2 \mid Hom_R(F(M), N) = 0 \},$
- $\mathcal{R}_G := \{ (M, N) \in (R\text{-Mod})^2 \mid Hom_R(M, G(N)) = 0 \}.$

Theorem

If $K(_,_): (R\operatorname{-Mod})^{op} \times R\operatorname{-Mod} \longrightarrow \mathcal{A}b$ is an AC bifunctor, then $\mathcal{R}_{(K)}:=\{(M,N)\in (R\operatorname{-Mod})^2\mid K(M,N)=0\}$ is biclosed wrt $\mathcal{H}.$

special cases

 $F: R\operatorname{\mathsf{-Mod}} \longrightarrow R\operatorname{\mathsf{-Mod}}$ almost cocontinuous covariant,

 $G: R\text{-Mod} \longrightarrow R\text{-Mod}$ almost continuous covariant.

- $\mathcal{R}^F := \{ (M, N) \in (R\text{-Mod})^2 \mid Hom_R(F(M), N) = 0 \},$
- $\mathcal{R}_G := \{ (M, N) \in (R\text{-Mod})^2 \mid Hom_R(M, G(N)) = 0 \}.$

Theorem

If $K(_,_): (R\operatorname{-Mod})^{op} \times R\operatorname{-Mod} \longrightarrow \mathcal{A}b$ is an AC bifunctor, then $\mathcal{R}_{(K)}:=\{(M,N)\in (R\operatorname{-Mod})^2\mid K(M,N)=0\}$ is biclosed wrt $\mathcal{H}.$

special cases

 $F: R\operatorname{\mathsf{-Mod}} \longrightarrow R\operatorname{\mathsf{-Mod}}$ almost cocontinuous covariant,

 $G: R\text{-Mod} \longrightarrow R\text{-Mod}$ almost continuous covariant.

•
$$\mathcal{R}^F := \{ (M, N) \in (R\text{-Mod})^2 \mid Hom_R(F(M), N) = 0 \},$$

•
$$\mathcal{R}_G := \{ (M, N) \in (R\text{-Mod})^2 \mid Hom_R(M, G(N)) = 0 \}.$$

If $\langle F, G \rangle$ is an adjoint pair then $\mathcal{R}^F = \mathcal{R}_G$.

Questions

Is any biclosed relation induced by an adjoint pair?

Questions

Is any biclosed relation induced by an adjoint pair?

Is any biclosed relation induced by an AC bifunctor?

Proposition

If \mathcal{R} is the biclosed relation induced by the adjoint pair $\langle F, G \rangle$ then the following diagrams commute:

Proposition

If \mathcal{R} is the biclosed relation induced by the adjoint pair $\langle F, G \rangle$ then the class of all \mathcal{R} -torsion theories is:

Proposition

If \mathcal{R} is the biclosed relation induced by the adjoint pair $\langle F, G \rangle$ then the class of all \mathcal{R} -torsion theories is:

$$\{(\mathbb{T}_{\sigma}, \overset{\leftarrow}{G}(\mathbb{F}_{\sigma})) \mid \sigma \in [[\sigma_{\mathcal{R}}, 1]]\}$$
$$= \{(\overset{\leftarrow}{F}(\mathbb{T}_{\tau}), \mathbb{F}_{\tau}) \mid \tau \in [[0, \tau_{\mathcal{R}}]]\}$$

Proposition

If \mathcal{R} is the biclosed relation induced by the adjoint pair $\langle F, G \rangle$ then the class of all \mathcal{R} -torsion theories is:

$$\{(\mathbb{T}_{\sigma}, \overset{\leftarrow}{G}(\mathbb{F}_{\sigma})) \mid \sigma \in [[\sigma_{\mathcal{R}}, 1]]\}$$
$$= \{(\overset{\leftarrow}{F}(\mathbb{T}_{\tau}), \mathbb{F}_{\tau}) \mid \tau \in [[0, \tau_{\mathcal{R}}]]\}$$

Definitions

Definitions

• We define a preorder on R-BiMod: $L \leq K$ if L generates K.

Definitions

- We define a preorder on R-BiMod: $L \leq K$ if L generates K.
- The equivalence class of L is denoted by [L]

Definitions

- We define a preorder on R-BiMod: $L \leq K$ if L generates K.
- ullet The equivalence class of L is denoted by $[L]_{\sim}$
- There is an order-preserving assignment:

$$\Psi: R ext{-BiMod}/\sim \longrightarrow [\mathcal{H}]_{\preceq} \ \Psi([L]_{\sim}) := \mathcal{R}_{[L]}$$

bimodules R/I

Proposition

If I is an ideal of R then:

bimodules R/I

Proposition

If I is an ideal of R then:

Proposition

If I is an ideal of R then:

 The corresponding adjoint pair to the bimodule R/I is (up to natural isomorphism):

$$\left\langle (\alpha_I^R)^*, \alpha_{R/I}^{R/I} \right\rangle$$

Proposition

If I is an ideal of R then:

 The corresponding adjoint pair to the bimodule R/I is (up to natural isomorphism):

$$\left\langle (\alpha_I^R)^*, \alpha_{R/I}^{R/I} \right\rangle$$

 The corresponding Galois connection on ℘(R-Mod) is given by:

$$egin{align*} f_{\mathcal{R}_{\llbracket R/I \rrbracket}}(\mathbb{T}_{\sigma}) &= \mathbb{F}_{\sigma lpha_{R/I}^{R/I}} \ f^{\mathcal{R}_{\llbracket R/I \rrbracket}}(\mathbb{F}_{ au}) &= \mathbb{T}_{(lpha_{I}^{R}: au)} \end{aligned}$$

Proposition

If I is an ideal of R then:

 The corresponding adjoint pair to the bimodule R/I is (up to natural isomorphism):

$$\left\langle (\alpha_I^R)^*, \alpha_{R/I}^{R/I} \right\rangle$$

 The corresponding Galois connection on ℘(R-Mod) is given by:

$$egin{align*} f_{\mathcal{R}_{\llbracket R/I \rrbracket}}(\mathbb{T}_{\sigma}) &= \mathbb{F}_{\sigma lpha_{R/I}^{R/I}} \ f^{\mathcal{R}_{\llbracket R/I \rrbracket}}(\mathbb{F}_{ au}) &= \mathbb{T}_{(lpha_{I}^{R}: au)} \end{aligned}$$

Proposition

If I is an ideal of R then:

 The corresponding adjoint pair to the bimodule R/I is (up to natural isomorphism):

$$\left\langle (\alpha_I^R)^*, \alpha_{R/I}^{R/I} \right\rangle$$

 The corresponding Galois connection on ℘(R-Mod) is given by:

$$egin{align*} f_{\mathcal{R}_{\llbracket R/I \rrbracket}}(\mathbb{T}_{\sigma}) &= \mathbb{F}_{\sigma lpha_{R/I}^{R/I}} \ f^{\mathcal{R}_{\llbracket R/I \rrbracket}}(\mathbb{F}_{ au}) &= \mathbb{T}_{(lpha_{I}^{R}: au)} \end{aligned}$$

Theorem

If R is a semisimple Artinian ring with |R-simp|=n then:

Theorem

If R is a semisimple Artinian ring with |R-simp| = n then:

• $[\mathcal{H}]_{\prec}$ is a Boolean lattice of 2^{n^2} elements.

Theorem

If R is a semisimple Artinian ring with |R-simp| = n then:

- $[\mathcal{H}]_{\prec}$ is a Boolean lattice of 2^{n^2} elements.
- *R*-BiMod/ \sim is a Boolean lattice of 2ⁿ elements.

Theorem

If R is a semisimple Artinian ring with |R-simp| = n then:

- $[\mathcal{H}]_{\prec}$ is a Boolean lattice of 2^{n^2} elements.
- R-BiMod/ \sim is a Boolean lattice of 2^n elements.
- Ψ is injective.

Theorem

If R is a semisimple Artinian ring with |R-simp| = n then:

- $[\mathcal{H}]_{\leq}$ is a Boolean lattice of 2^{n^2} elements.
- R-BiMod/ \sim is a Boolean lattice of 2^n elements.
- Ψ is injective.
- $Im(\Psi) = \{ \mathcal{R} \in [\mathcal{H}]_{\prec} \mid \mathcal{H} \subseteq \mathcal{R} \}.$

 $\label{eq:theorem} \mbox{The Boolean lattice } [\mathcal{H}]_{\preceq} \\ \mbox{for a semisimple Artinian ring } R \mbox{ with } |R\mbox{-simp}| = 2 \\ \mbox{}$

The image of $\Psi: R\text{-BiMod}/\sim \longrightarrow [\mathcal{H}]_{\preceq}$ for a semisimple Artinian ring R with |R-simp|=2

References

- Dickson, S.E.

 A torsion theory for abelian categories

 Trans. Amer. Math. Soc. 121 pp. 223–235, 1966.
- Domenach, F., Leclerc, B. Biclosed binary relations and Galois connections Order 18 pp. 89–104, 2000.
- Fernández-Alonso, R., Raggi, F., Ríos, J., Rincón, H., Signoret, C.

 The lattice structure of preradicals

 Comm. Algebra. 30(3) pp. 1533-1544, 2002.